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Physics of Ligand Migration in Biomolecules 

Peter Hanggi  ~ 

The study of migration of ligands in heme proteins is one of the methods used to 
obtain information about the dynamics and function of biomolecules. An 
appropriate description of the kineticsqnvolves the modeling of transport over a 
series of sequential barriers. Utilizing random walk theory, the physics of ligand 
migration enters the modeling of the kinetics on several levels of description: By 
use of generalized Brownian motion theory, we develop models for biomolecular 
rates in presence of a frequency-dependent damping of the ligand motion. The 
results have the form of a modified Kramers relation. If more than one ligand 
moves inside a biomolecule, nonlinear blocking effects become important. The 
migration kinetics can then be adequately modeled by a multivariable stochastic 
process with nonlinear transition probabilities. Further, we discuss the limit of 
validity of a description of ligand migration in terms of a set of linearly coupled 
deterministic rate equations. 

KEY WORDS: Non-Markovian Brownian motion; rate theory; multivari- 
able master equation; protein fluctuations; biomolecules. 

1. INTRODUCTION 

The fact that proteins are interesting dynamical systems is fully recognized 
by now. (1-3) While the three-dimensional structures, which have been 
determined for an increasing number of proteins, provide insight into the 
architecture of those systems, taken alone they cannot explain the observed 
properties. Proteins can assume a very large number of structurally differ- 
ent conformational substates. ( 1-4~ At physiological temperatures, the pro- 
tein fluctuates rapidly from one substate to another. Ligand migration, 
motility, allostery, etc. are clearly processes that depend on internal mobil- 
ity. Mobility is related to the intrinsic excitation field (random forces) 
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which provides the driving force in protein reactions. One of the methods 
to disentangle dynamic features in biomolecules is the study of migration of 
ligands in heme proteins such as O 2 or CO-migration in Myoglobin 
(Mb).(1,5,6) 

The paper is organized as follows: In Section 2 we elaborate on the 
experimental approach. Section 3 deals with a description of ligand migra- 
tion valid in the limit of a small ligand concentration in the protein-solvent 
environment. The method of random processes has found various applica- 
tions in describing biophysical phenomena. (v'8) In the context of ligand 
migration, fluctuation effects play a role on several levels of description: 
Familiar transport laws often become modified in an unexpected way by 
the presence of protein fluctuations. Two such examples are the modeling 
of biomolecular reaction rates under the influence of a nonuniform damp- 
ing and frequency-dependent transport treated in Section 4 by use of 
generalized Brownian motion theory, and the nonlinear migration at a high 
ligand concentration in solvent sketched in Section 5 in terms of a mul- 
tivariable stochastic model which accounts for the blocking effect at the 
heme site. 

2. EXPERIMENTAL APPROACH 

In a typical experiment, ligand migration is monitored optically. The 
optical absorption spectra of a free heme protein and one with the ligand 
(re)bound differ. From the absorbance measured at a suitable wavelength, 
the fraction N(t) of biomolecules with the ligand not rebound after an 
initial laser flash can therefore be determined. A measurement of N(t) 
constitutes an ensemble realization with small fluctuations (central limit 
theorem). In contrast, the fluctuations within a single biomolecule are more 
dominant and impact crucially the details of the dynamics. Typical exam- 
ples of relaxation for Mb-CO migration are plotted in Fig. 1. Below ~200 
K, each protein is frozen into a particular substate with a given activation 
energy. Migration after photodissociation reflects a distribution of barrier 
heights.(1,5) Processes occurring over an enormous time range from 10 .6 to 
103 sec are important. The migration follows approximately a power law. 
At very low temperatures, T < 40 K, molecular tunneling becomes impor- 
tant. (9) At high temperatures, the protein breathes and moves from one 
conformational substate to another; the ligand probes an "average barrier" 
and the time dependence becomes exponential. On varying the solvent 
viscosity, one observes systematic effects of the protein dynamics (t0) which 
ask for a challenging generalization of reaction theory. On varying the pH 
in the solvent one finds that 02 migration is practically independent of pH; 
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Recombination of CO after photodissociation of MbCO in glycerol-water solvent 
(3:1 v /v ;  after Ref. 5). Four different processes are observed. 

CO migration, however, probes the charge-dipole interaction near the heme 
site.( 1 i) 

3. KINETIC DESCRIPTION OF MIGRATION OF LIGANDS 

In the limit of small ligand concentration in the solvent S, the 
observed relaxation of 0 2 or CO migration in Mb can be adequately 
parametrized by a model of sequential barriers, that the ligand encounters 
as it moves along some reaction coordinate (5) (Fig. 2). In this case, a 
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Fig. 2. Migration of the ligand to the heine site is governed by multiple barriers. 
(A) migration path. (B) potential along reaction coordinate x. 
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multivariable stochastic model of the migration and a deterministic model 
based on linearly coupled rate equations yield identical results. ( ~2~ For 
instance, the rate of change of Ni( t  ), where Ni( t )  denotes the fraction of 
biomolecules with a CO or 0 2 ligand in well i v~ 1 (i = 1: binding site at 
heme), obeys the deterministic equation 

H i = ri , i_lNi_l  h- ri,i+lNi+ 1 -- Eri+l,i-q- r i_ , , i ]N i (3.1) 

For CO migration in Mb one can resolve four barriers, and for O 2 
migration one can resolve three barriers, ~5) The set (ri_+ ~,i) are rate coeffi- 
cients i ~ i + 1, which have the general form 

r ~ r(X) = p(/~)exp - ~(2k) (3.2) 

denotes the set of control parameters such as temperature, solvent 
viscosity, etc. The experimentally observed relaxation, N( t ) ,  is then given 
by 

N ( t )  = 1 - N l ( t  ) = P t ( x l  = 0; X) (3.3) 

where P~(x I = 0; ~) is the probability that the binding site with the occupa- 
tion x 1 - 0 or 1 is not occupied. Because in the limit of low concentration 
the total number of ligands within a given biomolecule is one or zero for all 
times t, nonlinear blocking effects (see Section 5) do not enter. Clearly, the 
real eigenvalues #~ < 0 of the corresponding relaxation matrix in (3.1), 
which govern the time dependence of N ( t ) ,  depend generally on the whole 
set of rates (r/_+l.~). The fastest time scale obeys 

max{I t~i[} < 2max{r i+ l , i  + ri-l , i}  (3.4) 

The smallest nonzero eigenvalue/~, which is a measure for the longest time 
scale in the problem, satisfies 

min ( r i •  <~ I•l----- 

where ~- is the average (first passage) time it takes a ligand to surmount the 
highest potential barrier on its way to the deepest well (binding site). Q 
denotes the highest relative barrier the ligand has to overcome to reach 
absorption at well i = 1 (see Fig. 2). The observed power laws at low 
temperatures result from a distribution of activation energies {~).(1,5,6) 

4, THEORY OF BIOMOLECULAR REACTION RATES 

In a kinetic description of ligand migration, most of the physics is 
transferred to the modeling of the rate coefficients. Namely, what equation 
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should be used to evaluate the dependence on the parameters • of biomo- 
lecular rates in condensed phases. The evaluation of the rate is related to 
the control of dissipation which again is related to the fluctuation dynamics 
(fluctuation-dissipation relations). At temperatures above ~ 4 0  K, where 
quantum effects can be neglected, a common approach widely used in 
chemistry and condensed matter theory is based on the standard transition 
state theory (or absolute rate theory). (13-15) In what follows, we restrict the 
discussion to a quasi-one-dimensional reaction path and model the rate as 
the passage over a mean barrier in a double-well potential q, (Fig. 3). The 
transition state theory (TST) result for the rate, r Tsx, has the form 

rTS'r = vlexp[ - (q~3 - ~0/kT] (4.1) 

v r denotes the frequency of the locally stable well at x 1. Processes in a 
dynamically moving system should, however, be influenced by the strength 
of damping (viscosity). There is no such dependence on transport coeffi- 
cients in the prefactor v I of the transition state rate. Taking nonequilibrium 
effects into account, Kramers derived in a classic investigation the result r 26) 

r K  - 2~rW3~0' [(Y2_4_ + 602)1/2 .~ ]exp[Y (q53n~. 1 )~  ] (4.2) 

being valid for a moderate and large damping y. In the large damping limit, 
~, >> o~ 3, (4.2) simplifies to 

rK WlW3 exp[ 2~ry ( ~ 3 k ? l )  ] 
- - - -  J ( 4 . 3 )  

r and ~03 ( >  0) denote the angular frequencies at the locally stable well at 
x~ and barrier at x3, respectively. Water at 293 K has a viscosity of about 
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10-2 poise (g cm-]  sec - ' ) ;  for 0 2, the critical viscosity, 7/c, for overdamped 
motion is of the order 10 -3 poise. Thus essentially all biochemical studies 
are in the high damping regime. 

None of the rate relations is general enough to cope with the experi- 
mentally measured viscosity dependence of biomolecular rates in the range 
of 10-3-10 2 poise. (,0) The experimental data can be fitted by the heuristic 
expression (~0) 

reXpt=(y~ +AO)exp [ (qb3--~l) 
kT 1 (4.4) 

where "/s is the solvent damping (co solvent viscosity) and 0 < ~ < 1 an 
attenuation coefficient (which may differ for different wells but is not 
dependent on type of solvent). For CO and 0 2 migration in Mb, K is 
typically of the order x ~ �89 .(m) The term involving A ~ describes a small but 
finite rate at viscosities ~ > 10 poise. In the following subsections, we 
investigate possible physical generalizations of the above rate laws. 

4.1. Influence of Nonuniform Damping 

Kramers' result can readily be generalized to the case of nonuniform 
damping.(,7) We inject particles at x I and remove them the moment they 
arrive at x 2. The resulting nonequilibrium current, Jo, builds up a total 
integrated density, no, proportional to the escape time z 0 = l/r; i.e., 

r =jo/no (4.5) 

Taking fully into account the nonlinearities of the potential field 4~(x), we 
obtain in the overdamped limit (Smoluchowski limit) the result (see, e.g., 
Ref. 18) 

Y(y) 1 r= kT[ ~X2fi(x)dx f x2 P(Y) dy (4.6) 
[ ~x! x 

where p oc exp - q,(x)/kT denotes the equilibrium probability. By use of 
approximately harmonic potential extrema, we can simplify (4.6) to 
give ( 17-19) 

r - w  l ~ exp [ (~37~1) 
2qry(x3) ] (4.7) 

with no explicit temperature dependence in the prefactor. Note that a 
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sharply domed barrier region would imply via (4.6) a temperature- 
dependent prefactor (x T -~/2 

Without further ad hoc assumptions, the result in (4.7) cannot explain 
the experimental findings in (4.4). Only if we impose without further 
justification a relation of the form (19) 

dlog[ 1/7(x3) ] = ~dlog(1/Ts) (4.8) 

we find 

dlogr/dlogy,  = - K (4.9) 

4.2. Influence of Frequency-Dependent Damping 

Inherent in Kramers' treatment is the assumption of a clear-out 
separation between time scales of "particle" (ligand) and "heat bath" 
motion. However, this is not always the physical situation. The rate of 
motion of the excitation field inside the protein can be of the same order as 
that of the ligand motion. In particular, the local motion of a ligand can be 
as fast as or faster than conformational fluctuations. Thus the precondi- 
tions for Kramers' theory in general and TST in particular are not met. In 
order to account for these frequency effects we must model the Brownian 
motion within the barrier region by a generalized Langevin equation in 
phase space (y, u) of coordinate and velocity (we use a unit mass for the 
particle and a notation y = x - x3) 

2 = u (4.10) 

= - f 0 ' r ( t  - + > 0 

Hereby, we have neglected in the barrier region effects of anharmonic 
potential contributions and assumed that a possible functionally nonuni- 
form damping has a smooth behavior around x 3. ~(t) is a stationary 
Gaussian thermal noise satisfying the fluctuation-dissipation relation 

(~(~)~(0)} - kTT(l~-[) (4.11) 

(4.10 and 4.1 l) define a non-Markovian process whose Gaussian condi- 
tional probability fit(Y, U Iyo, Uo) satisfies the time-convolutionless (but not 
memoryless) non-Markovian master equation (2~ 

o 
+ kT~(t)~-~u2 p, + oa--~3 O--~y p, (4.12) 
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where 

~(t) = -a(t)/a(t),  ~2(t) = -b(t)/a(t)  (4.13) 

and 

2 t 

(4.14a) 

b (0  = [ 0(t) (0 - 02(0 l 

The correlation, o(t), is defined by the inverse Laplace transform (L-1)  

o(t)= L-l[~(z)]= L-'[ 1 ] z 2-~o 2+z~,(z) ' O(t=O)=O (4.14b) 

The escape rate, (4.5), has been evaluated in Ref. 20 

2~r~ + ~2 ~7 --- (4.15) r = - -  - ~ exp 

with 

'7 = lira ~7(t), ~2 = l im ~2( t )  (4.16)  
t--,x~ t --> oO 

Thus, the rate in (4.15) has the structure of Kramers' equation (4.2), but 
with the bare damping 7 and the bare frequency r substituted by the "re- 
normalized" values ~7 [note that ~7 v ~ "~ (z = 0)] and ~2. Introducing the 
renormalized frequency 

(~2 )1/2 
= 4 -  + ~2 2"7 (4.17) 

we can recast (4.15) as 

r = ~---r TsT (4.18) 
~3 

a is a characteristic function of ~032 and of the damping 7(1~'1), but depends 
on temperature T only implicitly via damping y(l~-I)~ The result (4.15) can 
be simplified further, if p(t) is of the specific form 

p(t) = ~ Clt~'exp~i t, fl~" real (4.19) 
i=1 
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with ReX~ < �9 �9 �9 < Re2tn_ 1 < )tn, real. In this case, the limit a is equal to 

0 ( t )  
= lira - Xn > 0 (4.20) 

with Xn being the largest positive pole of t;(z). This special result, (4.20), 
presents a generalization of a result given by Grote and Hynes(21); they 
derived (4.18), (4.20) utilizing (4.19) with fli = 0 for all i, by use of a 
completely different approach which is based on an equilibrium flux-flux 
correlation expression of the rate. 

Given (4.15), the experimental findings in (4.4) can be understood in 
terms of a dynamic friction model (22) 

c + I~1 ' -~ [ exp[ - I~ l ,0= / r , ] ] ,  ,0 = > 0, 0 < K < 1 (4.21) 

where F(x) denotes the gamma function. The form (4.21) has been pro- 
posed by Doster. (22) In his "pac-man" model of dynamic friction, the 
damping y(Ir[) is modeled by a correlation of local  defect fluctuations 
(oc Irl ~-1) and an independent coupling to g l o b a l  protein-solvent fluctua- 
tions [co exp(-w21r[/Ts)]. The behavior of logc~ versus logTs is schemati- 
cally represented in Fig. 4. Above a transition value, y,, one has 

a' r rsr, (4.22) r =  rt ~ " -  7s > 7t 
003 

Fig. 4. 
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Schematic diagram of dependence of renormalized frequency a versus solvent 
damping Ys. 
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independent of 7~. Equation (4.22) gives the rate in the very large viscosity 
limit, where the first contribution in (4.4) can be neglected. In an intermedi- 
ate regime, we find - d l o g a / d l o g T s ' ~  x ;  i.e., 

r ~ ( A / , l ~ ) r  TsT  > r t , 7~ < ~,  < "It (4.23) 

Alternatively, memory effects can partially be simulated by random modu- 
lations of the frequency parameters ~01 o r  (.03 .(23) The results are similar in 
nature to those above, but the activation energy, (~3-  ~1), will also be 
affected by the strength of random modulation. (23,24) 

4.3. Influence of Dimensional Effects 

Kramers' arguments have been readily extended to many dimensions 
in the overdamped (Smoluchowski) limit. (25'26) A similar extension is possi- 
ble in presence of memory damping: Transport occurs over sequential 
saddle points with the amount of damping along the z direction, connecting 
two minima, being in the moderate damping regime. Further, motions 
"perpendicular" to z are strongly overdamped, such that all the velocities 
"perpendicular" to 2 can be eliminated adiabatically. The influence of 
many dimensions is then essentially reduced to a phase-space factor. Using 
the reasoning in Ref. 20 for (z, 2) motion gives 

r = (a /o~3) r~v  sT (4.24) 

is defined in (4.17) and ru TsT is the multidimensional generalization of 
(4.1). 

rNTST ( ~ v i / N I ~ I  ) =  i=1 i=l~i exp (~3-~,)kT (4.25) 

where the vi's are the frequencies at the minimum of q, and ~i's are the 
stable frequencies at the saddle point. Dimensional effects are thus not easy 
observable in the rate law. More important in biomolecular transport are 
probably effects caused by "curvature of dimension," as, e.g., migration on 
surfaces of spherelike protein parts. 

5. NONLINEAR MIGRATION: EFFECT OF BLOCKING 

If many ligands occupy simultaneously a well i, i = 1 , . . . ,  i . . . .  the 
simple deterministic rate description in (3.1) breaks down. The transition 
probabilities F ( x j  I x i ;  2t) between different wells, coupled to a bath of ligand 
concentration c, 

, - 1 ,  xj ) (5.1) ( . . . .  x i . . . . .  x j -  1 . . . .  ) . . .  x i . . . . . . . .  
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are generally nonlinear functions of the occupancy xj = 0, 1 . . . .  

F(xjlx i , X) = xirj~(xj, 2t) (5.2) 

In particular, in Mb the first ligand that rebinds at the heme site blocks 
further transitions; i.e., 

F(X 1 ] X i ,  X )  = xerl~(X)6x,,1 (5.3) 

The solution of the probability 

Pt(xi =O,X) = ~,, p t (Xl=O,  x2 ,x  3 . . . . .  Xmax ; ~t) --'-- 1 - -  (x] ( t ,X))  
X 2 �9 . . Xma x 

(5.4) 

must be calculated from a multivariable Markovian master equation with 
nonlinear ratesJ 12,27) A rather simple solution is possible if we assume 
linear rates for all wells i > 1 and a complete trap for site i = 1 (ril = 0, e.g., 
Mb-CO migration). Then, N(t) has the form ~ 12) 

N ( t ) = e t ( x  l = O ; ~ , ) = e x p -  (X,(t,%)), ( ~ ] ( t = 0 , T t ) ) = 0  (5.5) 

where (Y](t, ~)) has a simple interpretation: If the recombination were to 
start with an initial occupation of zero at heme site and equilibrium Poisson 
probabilities in wells i = 2 , . . . ,  /max, ('~1( t, ~)~ would be the mean occupa- 
tion of well i =  1 if no blocking were to occur [ ( ~ l ( t ) ) ~ o o ,  t ~ ] .  
Compared with (3.1), (5.4) gives a faster relaxationS27); the relaxation 
exhibits information about the volume capacity in different wells. 
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